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Abstract

Viruses able to infect the central nervous system (CNS) are increasingly being recognized as important factors that can cause mental
diseases by interfering with neuronal plasticity. The mechanisms whereby such infections disturb brain functions are beginning to emerge.
Borna disease virus (BDV), which causes a persistent infection of neurons without direct cytolysis in several mammalian hosts, has recently
gained interest as a unique model to study the mechanisms of viral interference with neuronal plasticity. This review will summarize several
hypotheses that have been put forward to explain possible levels of BDV interference with brain function.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Experimental infection by disease-inducing neurotropic
viruses is a powerful tool for investigating basic mechanisms

ease.
1 Tel.: +49 761 203 6526; fax: +49 761 203 6639. of brain functions and how they can be altered during dis
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Many possible outcomes to a viral infection in the CNS ex-
ist (Ahmed et al., 1996; Oldstone, 1991). In some instances,
viruses can persist in the absence of inflammatory infiltra-
tion and lysis of virally infected cells, which are the classic
hallmarks of virus infection. Such viral infections can re-
main unnoticed because they are not associated with easily
identifiable manifestations of acute infections. Nonetheless,
a persistent infection may affect the infected cells by interfer-
ing with several cellular functions. Damage associated with
viral persistence can sometimes be very specific and target a
defined type of neuron, such as herpesvirus persistence in sen-
sory neurons or poliovirus infection of motoneurons (Mims
and White, 1984; Storey et al., 2002). Alternatively, the infec-
tion can trigger the production of soluble factors, such as cy-
tokines, chemokines or neurotransmitters, which in turn may
have neurotoxic effects. Besides genetic and environmental
factors, viruses are also suspected to contribute to the etiology
of human mental disorders (Lipkin and Hornig, 2004; Yolken
and Torrey, 1995). Thus, deciphering the bases of neuronal
dysfunction caused by viral persistence using animal models
and in vitro systems may provide clues for studying disease
pathogenesis of neurobehavioral disorders in humans. The
exquisite neurotropism of Borna disease virus (BDV) and
the pattern of BDV-associated changes in neuronal physiol-
ogy and behavior makes it a unique model for this type of
investigation.
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Ludwig, 1997; Ludwig et al., 1988; Staeheli et al., 2000).
Depending on the age and immune status of the host, BDV
infection may present as immune-mediated disease with fa-
tal outcome (Borna disease) or subtle behavioral alterations
without overt inflammation (Dürrwald and Ludwig, 1997;
Ludwig et al., 1988; Staeheli et al., 2000). Intrigued by the
behavioral abnormalities observed in BDV-infected animals
such as in rats (Narayan et al., 1983) or in the lower primate
Tupaia glisor tree shrews (Sprankel et al., 1978), studies ini-
tiated in the 1980s tried to clarify whether BDV infection is
linked to psychiatric diseases (Amsterdam et al., 1985; Rott et
al., 1985). These studies identified BDV-specific antibodies
in sera of psychiatric patients with a higher prevalence than in
control cohorts, suggesting that human BDV infection may be
linked to psychiatric diseases. However, attempts to confirm
human BDV infection by non-serological methods, including
detection of viral nucleic acid by nested RT-PCR or virus iso-
lation have revealed inconsistent results (Bode and Ludwig,
2003; Carbone, 2001; Ikuta et al., 2002; Schwemmle, 2001)
and, therefore, this issue is still controversial. Multicenter
studies using standardized detection techniques may clarify
this controversy in the future.

BDV is a non-segmented, negative-strand RNA virus
(Briese et al., 1992; Cubitt et al., 1994a) that persistently in-
fects the central nervous system (CNS) of a broad range of an-
imals (Gosztonyi and Ludwig, 1995). It is non-cytolytic and
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In this review, we will summarize our current understa
ng on the interference of Borna disease virus with b
unction. We decided to focus in particular on possible
erference with neuronal plasticity and remodeling, as
s on the underlying possible molecular mechanisms.

.1. Borna disease virus

Natural infections with BDV were initially described
orses and sheep, while experimental infections have
stablished in a wide variety of vertebrates (Dürrwald and

ig. 1. BDV replicates at high levels in neurons without overt cytopath
nd right panels, respectively) of primary cultures of rat neurons infec
f the neurons in the culture are infected by day 11 post-infection. R
ynapsin 1 (red). Nuclei are stained blue with DAPI. Note that BDV in
eplicates almost exclusively in neurons (Fig. 1). However
nfection of astrocytes and glial cells also occur at later st
f infection (Carbone et al., 1991; Gosztonyi and Ludw
995). Although BDV is highly neuronotropic, it can b
dapted to persistently infect a broad range of non-neu
ells lines (Ludwig et al., 1988; Staeheli et al., 2000). BDV
ncodes for at least six proteins: the nucleoprotein (N)
hosphoprotein (P), the protein (X), the matrix protein (

he glycoprotein (G) and the polymerase (L) (Briese et al.
995; Kishi et al., 2002; Schneider, 2005). Unlike the repli-
ation of otherMononegavirales, BDV replication and tran

t or impaired cell survival. Representative low and high magnificationviews (left
BDV. Left: immunofluorescence staining for BDV-N, showing that nely 100%

ouble immunofluorescence staining for BDV-N (green) and the synaer
does not lead to impaired morphology or survival of the neurons.
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scription occurs in the cell nucleus (Briese et al., 1992; Cu-
bitt and de la Torre, 1994), where alternative splicing of vi-
ral transcripts regulates the expression levels of M, G and
L (Cubitt et al., 1994b; Schneemann et al., 1995; Schnei-
der, 2005). Whereas M and G remain cytoplasmic, P, N, L
and X contain nuclear import sequences and are, therefore,
targeted to the nucleus, where the polymerase complex is
built (Briese et al., 1995; Kishi et al., 2002; Schneider, 2005;
Schwemmle et al., 1998). BDV N additionally contains a
nuclear export sequence and may, therefore, be involved in
the nuclear export of the viral ribonucleoprotein complexes
(RNPs) (Kobayashi et al., 2001). Similar to the glycoproteins
of other negative-strand RNA viruses, the BDV glycoprotein
is post-translationally glycosylated and undergoes cleavage
by the cellular protease furin (Gonzalez-Dunia et al., 1997,
1998). The budding process involves the coordinated assem-
bly of the viral RNPs into viral particles by M and the two
cleavage products of G (Gonzalez-Dunia et al., 1997, 1998).
Despite the pronounced viral transcription and replication ac-
tivity of this virus, only few infectious particles reside in one
cell and almost no free virus is released (Pauli and Ludwig,
1985). Thus, it is assumed that viral dissemination occurs pre-
dominantly by cell-to-cell spread, including the infection of
neurons by the anterograde and retrograde route (Morales et
al., 1988). However, production of viral particles is necessary
for viral spread, since the expression and correct processing
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therefore, depends on the plasticity of certain neuronal cir-
cuits in the CNS. Although it is often related to changes in
the efficacy of synaptic transmission, neuronal plasticity is
also accompanied by morphological changes, such as the for-
mation of new synapses (synaptogenesis) and an increase
of dendritic arborization and postsynaptic spines (Engert
and Bonhoeffer, 1999). These morphological changes can
be evaluated by changes in the expression profiles of pre-
and postsynaptic marker proteins (i.e. synaptophysin, synap-
tobrevin, PSD-95, etc.) and other neuronal proteins (such as
the growth-associated protein GAP-43). As discussed below,
some of these markers have demonstrated apparent changes
in synaptic density following BDV infection in neonatal rats
or in BDV-P transgenic mice (Gonzalez-Dunia et al., 2000;
Kamitani et al., 2003).

Most of our current knowledge about neuronal plasticity
was inspired by the pioneering work of D. Hebb, who pos-
tulated that if two interconnected neurons were adequately
stimulated, the synapses between them would be strength-
ened (Hebb, 1949). Later, the discovery of long-term poten-
tiation (LTP) provided the first mechanism supporting Hebb’s
hypothesis, by showing that specific patterns of neuronal
stimulation would give rise to long-lasting increase in the
efficacy of neuronal transmission (Bliss and Lomo, 1973;
Lomo and Bliss, 2003). Alternative patterns of stimulation
can also result in a decrease in the efficacy of transmission,
a LTD).
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f BDV G are required for efficient viral dissemination
eurons (Bajramovic et al., 2003).

Until now, detailed studies of BDV at the molecular le
ere greatly impaired by the lack of a suitable system for
ipulating this virus at the genetic level. However, two lab

ories have recently established functional polymerase a
ased on artificial minigenomes and have confirmed tha
nd L form the active functional polymerase complex (Perez
t al., 2003; Schneider et al., 2003). As described elsewhe

n this issue, the successful rescue of infectious BDV has
een recently achieved (Schneider, 2005). These new revers
enetic tools will hopefully reveal insights into pathogen
s well as the molecular biology of BDV.

.2. Neuronal plasticity

BDV persistence can occur without overt inflamma
nd yet still cause behavioral abnormalities and neurod
pmental damage (Pletnikov et al., 2002). This phenomeno
as been observed in adolescent or newborn animals (s

n the rat), representing infection at a time when the b
s subjected to extensive tuning and shaping of neu
onnections. Since non-cytolytic replication is a hallm
f BDV, it has been proposed that BDV-linked CNS da
ge could be caused in part by viral interference with
onal plasticity (Gonzalez-Dunia et al., 2000) at least in the
arly phases following BDV infection. The term ‘neuro
lasticity’ refers to the ability of neurons to adapt their fu

ional and morphological characteristics to environmenta
uences. Learning and neuronal survival and developm
s

phenomenon designated as long-term depression (
oth LTP and LTD are believed to play essential role

earning and on the storage of new information. Altho
euronal plasticity occurs in several areas of the CNS
ost studied system is the hippocampus. The hippoca
lays an important role in the establishment of memory
articular in acquiring orientation in a new environment,
alled spatial learning). Some neuronal connections in
ippocampus have been used as the main anatomica
trate for the demonstration of LTP (Rosenzweig and Barne
003). The “trisynaptic loop” of the hippocampus conne
entate granule cells (which receive a major input from
ntorhinal cortex) to the pyramidal neurons of the CA3
ion of the hippocampus proper, which are in turn conne

o neurons of the CA1 region. Interestingly, BDV has a
ominant tropism for neurons of the hippocampus and lim
ortex (Gosztonyi et al., 1993; Gosztonyi and Ludwig, 198).
n addition, neonatal infection of rats leads to selective
f dentate granule cells, thus disrupting the above-menti

oop. Viral persistence, therefore, likely interferes with n
onal plasticity processes in the hippocampus.

The molecular and cellular mechanisms underlying
onal plasticity are the subject of intense investigati
olecules such as calcium, neurotransmitters (in partic
lutamate and serotonin, or 5-HT), neurotrophic growth

ors (or neurotrophins) and nitric oxide are some of the sig
hat mediate neuronal plasticity (Mattson et al., 2004). They
ctivate many intracellular signaling pathways (reviewe
etail by Malenka and Bear, 2004; Thomas and Huga
004), including protein kinase A (PKA), PKC, CaM kina
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II, MAP kinases and tyrosine kinase SRC, which will then
lead to the phosphorylation of molecules that are involved
in synaptic transmission. Here, we will specifically address
the role of neurotrophins (McAllister et al., 1999) because
BDV is putatively linked to neurotrophin system dysregula-
tion. Neurotrophins (as well as their specific receptors) are
expressed at high levels in areas of the brain subjected to in-
tense plasticity and several neurotrophins are secreted in an
activity-dependent manner.

The neurotrophins comprise a family of at least four struc-
turally related proteins: nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3)
and neurotrophin-4/5 (NT-4/5). Their corresponding recep-
tors are tyrosine kinase receptors (Trk receptors) and p75
(McAllister et al., 1999). Binding of the neurotrophins to
their cognate Trk receptor initiates signaling cascades (see
Fig. 2, left panel) by phosphorylation of tyrosine residues on
the cytoplasmic domains of the receptors. This phosphoryla-
tion induces docking of adapter proteins to phosphotyrosine-
binding or src-homology-2 motifs. These adapter proteins

couple the receptors to intracellular signaling cascades,
which include the phosphatidylinositol-3-kinase/Akt kinase
pathway, phospholipase C� and the Ras/MEK/ERK kinase
pathway that ultimately leads to gene expression, neuronal
survival and neurite outgrowth.

In summary, neuronal plasticity is a key process involved
in learning, memory and neuronal survival. Any interference
with molecular pathways involved in the regulation of neu-
ronal plasticity (such as the synthesis of or the response
to neurotrophic factors) will likely have important conse-
quences on brain development and function.

2. Current models used to study BDV-induced
behavioral changes

2.1. Infection of tree shrews

BDV infection in tree shrews (Tupaia glis) is a unique ex-
ample of BDV-induced behavioral abnormalities in a species

F
(
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1
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r

ig. 2. Overview of signaling pathways induced by neurotrophins (with the
HMGB1) binding to RAGE (right panel). The possible levels of interferen
etails). Abbreviations used in the figure: BDNF, brain-derived neurotroph
,4,5 trisphosphate; DAG, diacylglycerol; PKC, protein kinase C; PI3K, ph
rb2-associated binder-1; SOS, son of sevenless; MEK, MAP kinase kinase
lement-binding protein; HMGB1, high mobility group B1 protein; RAGE, rec
as-related C3 botulinum toxin substrate 1 and NF-�B, nuclear factor kappa B.
example of BDNF binding to its TrkB receptor, left panel) and by amphoterin
ce mediated by BDV in these signaling pathways are indicated (see text for
ic factor; TrkB, neurotrophin receptor B; PLC, phospholipase C; IP3, inositol
osphoinositide 3-kinase; Grb2, growth factor receptor-bound protein 2;Gab1,
; ERK, extracellular signal-regulated protein kinase; CREB, cyclic AMP response
eptor for advanced glycation endproducts; Cdc42, cell division cycle 42;Rac1,
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that exhibits complex social organization and behavioral
repertoire (Sprankel et al., 1978). BDV infection of tree
shrews leads to an inflammatory reaction in the CNS with
no extensive neuronal damage. The clinical manifestations of
the behavioral disease in these animals were largely shown
to be dependent on the housing conditions; different dis-
ease outcomes were observed between socially isolated and
group-housed animals (Sprankel et al., 1978). Socially iso-
lated BDV-infected females exhibited a phase of exaggerated
spontaneous locomotor activity, followed by a phase of clini-
cal neurological symptoms characterized by spatial and tem-
poral disorientation, and alterations in behavior. In contrast,
BDV-infected tree shrews kept in pairs exhibited a signifi-
cant increase in all components of social behavior and there
was a reversal of social roles in the initiation of sexual in-
teraction. While the pathogenetic mechanisms of abnormal
social activities remains obscure, it has been suggested that
the disinhibition towards the environmental stimuli observed
in infected animals could be due to BDV-induced damage to
the limbic system, which has been implicated in the regula-
tion of social interaction (Sprankel et al., 1978). It is unclear
whether this damage results from an inflammatory reaction
or directly from BDV interference with neuronal plasticity.

2.2. Infection of gerbils

the
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logical symptoms and behavioral abnormalities result mainly
from immunopathological processes mediated by MHC class
I-restricted cytotoxic CD8 T cells, which require help from
CD4 T cells (Hausmann et al., 1999). However, BDV-infected
mice that lack functional CD8+ T cells and, thus do not de-
velop an immunopathology, exhibited defects in their spa-
tial learning abilities, these mice presented slightly impaired
escape performance, while their exploratory behavior in an
open field test was indistinguishable from uninfected con-
trol mice (Sauder et al., 2001). Intriguingly, the learning
deficits correlated with elevated levels of expression of the
chemokine IP-10.

2.4. Studies in transgenic models

In 2003, Kamitani and colleagues generated transgenic
mice expressing BDV P in the CNS, specifically in astrocytes
using the GFAP promoter (Kamitani et al., 2003). This selec-
tive glial expression of P in mice led to behavioral and neu-
rological abnormalities, such as enhanced inter-male aggres-
siveness, hyperactivity and spatial reference memory deficits.
Analysis by immunocytochemistry revealed a marked de-
crease in synaptic density, assessed by staining for synap-
tophysin, without reactive astrocytosis. In addition, brains
of transgenic mice displayed significant reductions in brain-
derived neurotrophic factor and serotonin receptor expres-
s tive
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In 1999, the group of K. Ikuta in Japan reported that
ongolian gerbil (Meriones unguiculatus) was found to b

xtremely susceptible to BDV infection (Nakamura et al
999). This group has recently established that gerbils
ibit a prominent neurological disease upon BDV infec
ssociated with high mortality (Watanabe et al., 2001, 200).
pecifically, neonatally infected gerbils develop a fatal n

ological disease without neuronal destruction. Remark
nfection develops without signs of inflammation or act
ion of resident CNS cells. In particular, there is no activa
f astrocytes (astrocytosis) associated with high replicati
DV in the brain. Intriguingly, elevated levels of cytokin

n particular of IL1�, have been observed in the brains
DV-infected gerbils (Watanabe et al., 2003). Since IL1�
as considerable effects when expressed in the CNS (Neveu
nd Liege, 2000), elevated levels of this cytokine may co

ribute to the neuronal pathology observed in BDV-infec
erbils. In conclusion, the gerbil model may offer an alte

ive system for examining the mechanisms underlying B
nterference with neuronal function, although no impairm
n neuronal plasticity has yet been documented in this m

.3. Infection of mice

Despite pronounced virus replication in the brain, it
riginally thought that the mouse was resistant to B

nduced disease (Kao et al., 1984; Rubin et al., 1993). How-
ver, subsequent investigations demonstrated that c
ouse strains, such as MRL mice, become severely dis
pon BDV infection (Hallensleben et al., 1998). The neuro
ion. This study raised the intriguing possibility that selec
lial dysfunction induced by the P protein of BDV may,

urn, be responsible for neuronal deficits seen in transg
nimals. Although BDV-P transgenic mice may provid
ew animal model for studying behavioral abnormalities
ignificance for the physiopathology of BDV infection is
lear, since neurons and not astrocytes are the primary s
DV replication. Recently, another group has generated

ransgenic for BDV N, expressed in either neurons or a
ytes. However, no behavioral abnormalities were repo
n this case (Rauer et al., 2004).

.5. Infection of rats

The model of rat infection with BDV has been the m
idely used for behavioral studies (Hornig et al., 2003
letnikov et al., 2002, 2003). The spectrum of BDV-cause
iseases in rats ranges from progressive, immune-med
eningoencephalitis to subtle behavioral abnormalities
ending on several factors, in particular on the age of th
t infection (Bautista et al., 1994; Dittrich et al., 1989; Horn
t al., 2003; Pletnikov et al., 2002, 2003).

.5.1. Infection of adult rats
In adult immunocompetent rats, BDV causes a biph

isease first characterized by a classical immune-med
NS disorder, associated with massive neuronal des

ion and behavioral disturbances. The near-resolution o
ammatory infiltrates, viral persistence and signs of chr
eurological disease follows this first phase. The ma
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neuronal destruction caused by the immune reaction read-
ily explains the chronic nature of the neurological disease
(Schwemmle et al., 1999). This model of virus-induced in-
flammation in the brain has spawned numerous studies, which
have addressed the immune effectors implicated in the pathol-
ogy of CNS disease and highlighted the interest in this ex-
perimental model for studying the immunopathological role
of T cells in such diseases (Bilzer and Stitz, 1994; Planz et
al., 1993; Stitz et al., 2002).

Most of the behavioral disturbances observed following
infection of adult rats with BDV have been associated with the
prominent inflammatory reaction that takes place in the CNS.
The hyperactive-aggressive early phase after BDV infection
correlates well with the peak of inflammation in the brain
parenchyma and is rather common in encephalitic reactions
to viral infections, such as rabies or picornavirus infections
(Johnson, 1998). The tropism of BDV for biogenic amine
and limbic systems means these brain regions are primary
targets for virus-induced specific immune responses, which
may explain the hyperactivity and frenzied behavior observed
in infected rats (Solbrig and Koob, 2003; Solbrig et al., 1994).

The immune-mediated destruction of the brain
parenchyma of the extrapyramidal motor and limbic
systems gives rise to a multitransmitter CNS disease that
can be revealed with several pharmacological probes and
offers an attractive model for investigating the impact of
i gical
d mine
s to
d ne
( ed
t ptors,
t (the
r tion
t and

norepinephrine circuits were also reported. Furthermore,
striatal lesions (likely a consequence of the destruction
of brain cells by the anti-BDV immune response) were
accompanied by a reactive enhanced expression of neu-
rotrophic factors (Solbrig and Koob, 2003; Solbrig et al.,
2000). While the devastating effect of the antiviral immune
response in these animals makes it difficult to assess possible
direct effects of BDV on neuronal plasticity, compensatory
changes at the neural systems level are still revealed by this
model.

2.5.2. Infection of newborn rats
In contrast to the model described above, neonatal infec-

tion of Lewis rats with BDV proceeds to lifelong behavioral
abnormalities without overt inflammation (Pletnikov et al.,
2002). Infection of neonatal rats, thus offers a unique model
for studying BDV-induced structural and functional CNS al-
terations. Although these animals appear normal to the casual
observer, they do display behavioral abnormalities (Bautista
et al., 1994; Dittrich et al., 1989; Pletnikov et al., 1999a,b). In
particular, they exhibit hyperactivity, cognitive defects, social
behavior (play) abnormalities and chronic anxiety (Hornig et
al., 1999; Pletnikov et al., 2002). Following neonatal infec-
tion, BDV will preferentially damage CNS areas that expe-
rience an extensive postnatal differentiation (Bautista et al.,
1995; Eisenman et al., 1999; Pletnikov et al., 2003). One
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the dentate gyrus is an area designated for neuronal plasticity.
In other brain areas, a specific dropout of neurons has been
reported, in particular a loss of foliation and death of Purkinje
cells in the cerebellum (Bautista et al., 1995; Eisenman
et al., 1999). Late in infection, cortical shrinkage has been
demonstrated, accompanied with reduced levels of synapto-
physin and GAP-43 (Gonzalez-Dunia et al., 2000; Pletnikov
et al., 2002). As a result of the BDV-induced neurodevelop-
mental damage, a prominent activation of glial cells (astro-
cytes and microglia) occurs, together with increased levels
of proinflammatory cytokines and chemokines in the CNS
of these animals (Hornig et al., 1999; Plata-Salaman et al.,
1999; Sauder and de la Torre, 1999; Weissenbock et al., 2000;
Zocher et al., 2000). This prominent activation of soluble fac-
tors is likely to contribute to neuronal defects observed in this
model in the later stages of infection. Neonatal infection also
leads to monoaminergic dysfunction, revealed by changes in
the levels of tissue serotonin and norepinephrin, in particular
a strong increase in serotonin in the limbic system of
BDV-infected rats (Dietz et al., 2004; Pletnikov et al., 2000).

3. Molecular mechanisms that might lead to
disturbances in neuronal plasticity by BDV
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Weissenbock et al., 2000; Zocher et al., 2000). Below, we
discuss possible mechanisms of BDV direct interference with
neuronal function.

3.1. Interference with trophic support from astrocytes to
neurons

Results from in vivo studies and cultured glial cells have
revealed that infection with BDV impairs astrocytic function.
Astrocytes are supporting cells in the CNS and play essential
roles in maintaining brain homeostasis. Recent data suggest
that they are also important regulators of neuronal activity and
synapse stabilization (Newman, 2003; Slezak and Pfrieger,
2003). Thus, it is plausible that the disruption of their normal
activities by BDV infection could contribute to impaired brain
function. For example, it has been shown that BDV infection
of the astrocyte-derived cell line C6 leads to an upregulation
of the molecule tissue factor (TF), which is also seen in astro-
cytes of rats infected with BDV as neonates (Gonzalez-Dunia
et al., 1996). This upregulation is due to increased transcrip-
tional activity of the TF promoter together with a stabilization
of TF mRNA. This finding may be important, given the pos-
sible role of molecules of the TF family in the regulation
of brain function. In particular, activation of the coagulation
protease cascades by TF results in the generation of the pro-
tease thrombin, which plays a role in neural development and
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nd astrocyte morphology (Cunningham, 1992). In anothe
eries of experiments, BDV infection induced an inhibi
f glutamate uptake in primary cultures of feline astrocy
uggesting that BDV could affect an astrocyte function
s required to prevent neuronal excitotoxicity (Billaud et al.,
000). In addition, specific expression of BDV P protein
strocytes led to behavioral abnormalities and impaired
onal plasticity, further supporting the hypothesis that
aired trophic support of astrocytes to neurons may und

he neuronal dysfunction associated with BDV persist
Kamitani et al., 2003). Finally, the activation of CNS glia
ells (astrocytes and microglia), a phenomenon observ
he late stages of newborn rat infection with BDV, trigg
he production of proinflammatory cytokines, thus furt
nhancing brain insult (Hornig et al., 1999; Plata-Salaman
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hat BDV has a predominant and early tropism for neu
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weeks following infection (Bautista et al., 1994; Goszton
t al., 1993; Gosztonyi and Ludwig, 1984, 1995). Therefore

he link between impaired astrocytic function and BDV
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.2. Interference with amphoterin signaling

Amphoterin, or high mobility group B1 (HMGB1) pr
ein, was recently identified as a protein which interacts
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BDV P (Kamitani et al., 2001). To date, it remains one of the
few cellular proteins which have been formally shown to in-
teract with BDV components, along with the demonstration
of the interaction between BDV N and the Cdc2–cyclin B1
complex (Planz et al., 2003). HMGB1 belongs to a family
of non-histone proteins that are highly abundant in the nu-
cleus (Bustin, 2002; Degryse and de Virgilio, 2003). HMGB
proteins contain two homologous DNA-binding domains and
an acidic C-terminal domain and are highly conserved in all
mammals. Due to their DNA-binding properties, HMGB pro-
teins have been implicated in the regulation of transcription
and in DNA repair and recombination, through the interac-
tion of HMGB with nuclear proteins like RAG1, p53 and
Hox, which will increase the capacity of the latter proteins to
interact with DNA. HMGB proteins are also involved in dif-
ferentiation processes and in extracellular signaling, which is
in part achieved by secretion of HMGB proteins into the ex-
tracellular space. Studies with HMGB1 have revealed a key
role in neurite outgrowth and cell migration (Degryse and
de Virgilio, 2003; Fages et al., 2000; Taguchi et al., 2000)
due to its activation of the extracellular receptor, receptor of
advanced glycation end products (RAGE). The activation of
RAGE leads to the induction of various signaling pathways,
resulting in re-organization of the actin cytoskeleton (Rauvala
et al., 2000).
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with the normal response of BDV-infected neurons to neu-
rotrophin stimulation may either affect neuronal morphol-
ogy during CNS development or the efficacy of synaptic
transmission. Thus, the effects of nerve growth factor, the
prototypic member of the neurotrophin family, were ana-
lyzed on PC12 cells, persistently infected with BDV. The
PC12 cell line, a classical model in neurobiology, is a neu-
ral crest-derived cell line that exhibits features of neuronal
differentiation in response to NGF (Hans et al., 2001). It
was shown that persistence of BDV in PC12 cells leads to
dramatic changes in cell morphology and impaired expres-
sion of the neuroplasticity-related genes GAP-43 and synap-
tophysin. Moreover, infection with BDV caused a complete
block in NGF-induced neurite outgrowth. This block was due
in part to the down-regulation of NGF receptors, coupled with
changes in the NGF signal transduction cascade, including
inhibition of translocation of activated ERK kinases to the
nucleus. More recently, it was shown that primary rat hip-
pocampal neurons infected with BDV are also unresponsive
to treatment with neurotrophins BDNF and NT-3, not only
in terms of ERK phosphorylation but also of the synaptic
remodeling which accompanies long-term exposure to neu-
rotrophins (seeFig. 2, left panel) (Hans et al., 2004). In partic-
ular, hippocampal neurons infected with BDV displayed de-
fects in the expression of synaptic vesicle proteins and synap-
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.3. Interference with neurotrophin signaling
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cidation of viral–neurotrophin interactions will enhance our
understanding of behavioral phenotype associated with BDV
persistence in the CNS.

4. Conclusion

Studies on animal models of viral infection are instru-
mental for a better understanding of the biological mecha-
nisms involved in the pathogenesis of many human diseases.
They also provide valuable insights into the basic mecha-
nisms of cellular function and factors involved in host de-
fense against pathogens. Some relevant examples are infec-
tions with Theiler’s virus, which is used as a mouse model for
multiple sclerosis, or with LCMV, which has helped to un-
derstand the basis of MHC restriction of immune responses
(Brahic, 2002; Zinkernagel et al., 1985). In this respect, BDV
offers a new and intriguing model because of its unique fea-
tures, namely its specific neurotropism for neurons of the
limbic system (involved in memory and behavior) and its
non-cytolytic replication strategy. Studies of BDV biology
cover the fields of viral pathogenesis, immunology and neu-
robiology. Recent advances in the ability to manipulate the
BDV genome and the development of novel study systems,
such as transgenic mice or the use of ex vivo slice culture sys-
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