Borna disease virus and the evidence for human pathogenicity: a systematic review

R.M. CHALMERS, D.Rh. THOMAS and R.L. SALMON

From the NPHS Communciable Disease Surveillance Centre, Cardiff, UK

Received 23 July 2004

Summary

Background: Borna disease is a neurological viral disease of veterinary importance in central Europe, although Borna Disease virus (BDV) has been reported to be present in animals in most continents. The hypothesis that BDV is associated with human illness is controversial. However, should even a small fraction of mental illness be attributable to infection with BDV, this would be an important finding, not least because illness in that sub-population would, theoretically, be preventable.

Methods: We systematically reviewed the evidence: that BDV infects humans; for the role of BDV in human neuropsychiatric illness; to assess the suitability of currently available laboratory methods for human epidemiological studies.

Results: We identified 75 documents published before the end of January 2000, describing 50 human studies for BDV. There were five case studies and 44 (sero)prevalence studies, in a variety of patient groups. Nineteen prevalence studies (43%) investigated seroprevalence, 11 (25%) investigated viral prevalence and 14 (32%) investigated both. Seroprevalence ranged from 0% to 48%, and prevalence of virus or viral footprints from 0% to 82%. **Discussion:** Although agreed gold standard tests and evidence for test specificity are lacking, there is evidence that humans are exposed to the virus. Further epidemiological studies are required to establish whether there are associations with disease.

Introduction

Borna disease was first described in the early 19th century as an 'equine brain disease with signs of agitation'¹ and obtained its name following an epidemic in military horses in Borna, Saxony, in 1885. Since then, this naturally occurring meningoencephalitic disease has been described mainly in horses, but also in sheep, cattle and other domesticated and wild animals and in a variety of experimentally infected host species.² The aetiological agent, Borna disease virus (BDV), also causes clinically definable and reproducible behavioural abnormalities in rats and non-human primates, some of which resemble neuropsychiatric disorders

in humans. Viral tropism for the limbic system, including excitatory fields in the hippocampus, has been reported.^{3,4} These areas of the brain govern emotions important to survival, visceral responses and olfactory sensations, and processes involved in memory. The detection of BDV antibodies and viral RNA in peripheral blood mononuclear cells (PBMCs) from psychiatric patients has furthered the suggestion that BDV is linked to human neuropsychiatric illness.⁵

Routes of transmission are unproven, but thought to be via excreta or nasal, saliva and conjunctival secretions, either directly or indirectly through

Address correspondence to Dr D.Rh. Thomas, NPHS Communicable Disease Surveillance Centre, Abton House, Wedal Road, Cardiff CF14 3QX. email: daniel.thomas@nphs.wales.nhs.uk

[©] The Author 2005. Published by Oxford University Press on behalf of the Association of Physicians.

All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org

contaminated food and water. BDV RNA has been detected in secretions from horses by reverse transcriptase polymerase chain reaction (RT-PCR), both in the presence and absence of clinical illness.^{6,7} The detection of viral markers in blood raises the possibility of blood-borne transmission. The virus itself is an enveloped, non-segmented negativestrand RNA virus, Order Mononegavirales, Family Bornaviridae (ICV Jerusalem). Several features of its molecular biology are remarkable, and some are relevant to questions regarding the detection and spread of the virus, and the epidemiology of disease. For example, the virus replicates at lower levels than many other viruses, producing low numbers of infectious particles, although cell to cell transmission of incomplete particles may occur.⁸ Sensitive methods are therefore required for virus detection and identification. Demonstration of BDV antigens in populations of PBMCs from hospitalised psychiatric patients was first reported by Bode et al., in 1994,⁹ and the detection of BDV RNA in PBMCs of neonatally infected rats¹⁰ stimulated investigation and detection in psychiatric patients.¹¹ The detection of antibodies in humans was first reported in 1985, in patients with depression and psychiatric disorders.¹² The s-antigen (p40 and p24 complex) initiates the major humoral response, and has been the main target for serological studies.13

The hypothesis that BDV is associated with human clinical illness is controversial. However, should even a small fraction of mental illness be attributable to infection with BDV, this would be an important finding, not least because illness in that sub-population would be potentially preventable. We performed a systematic review¹⁴ to: evaluate the evidence that BDV infects humans; evaluate the role of BDV in human neuropsychiatric illness; and assess the suitability of currently available laboratory methods for human epidemiological studies.

Methods

On-line and library databases were used to identify any studies involving the detection of BDV or its markers in human subjects. The following sources were searched using the term 'Borna': Medline, 1966 to January 2000; Institute for Science Information (Current Contents and Science Citation Index); British Library Document Supply Centre (including System for Information on Grey Literature); BIDS, 1981 to January 2000; BIOSYS via Datastar on-line index system, 1970 to January 2000; and the Cochrane Collaboration on CD-Rom. The search was not limited by language or sources. Inclusion criteria were studies published prior to January 2000, where the study participants = human, investigation = antibody or antigen or viral markers, outcomes = prevalence data. This was followed by hand searching of the literature for further references, and by consultation with leading researchers, facilitated by the first UK workshop on Borna Disease Virus in March 2000.¹⁵

The primary studies were identified and assessed by the same researcher (RC). Due to the nature of the investigations and variation in methods and study groups found, meta-analysis was not undertaken. However, results were summarized to describe the studies undertaken, show the groups investigated, the tissue tested, laboratory methods used and results obtained. To facilitate crossreferencing, reports were allocated a study number, generated in chronological order. Seroprevalence (antibody) studies were allocated a number prefixed with 'Ab', studies for the prevalence of viral antigens or genetic markers were numbered with a 'V' prefix, and studies for both, were given an 'AbV' prefix. Individual case studies were described separately.

Results

We identified 75 publications that contained details of 50 human case or prevalence studies of Borna disease. The study designs identified were: five case studies of individual patients, and 44 (sero)prevalence studies of 138 groups of patients, including five studies of monozygotic twins (Tables 1-3). In 24/44 (55%) studies covering 64 groups of patients, a control or a comparison group was also tested to compare prevalence and to measure association between markers for infection and clinical illness. Epidemiological and exposure data was additionally gathered in just two studies. There were no studies in which the study design described the random or systematic recruitment of cases, selection of controls or systematic recruitment of a study cohort.

Case studies

A case of encephalitis with neurological and psychiatric symptomology was attributed to BDV when an IgG titre of 1/10 was detected.⁸⁴ Two family cases of psychiatric disorders were detected among 200 seropositive psychiatric cases. In both families, in addition to the primary patient, a second family member also had psychiatric or neurological illness as well as BDV antibodies.⁸⁵ BDV antibodies

Study code	Study description	References
Ab 1	Prevalence of BDV antibodies in patients with unipolar and bipolar depression in Philadelphia (US) and patients with heterogenous pychiatric disorders in Giessen and Wurzburg (Germany), and in local control subjects.	12, 16
Ab 2	Prevalence of BDV antibodies in patients with HIV, EBV, affective disorder, drug abusers and a control group in US and West Germany.	17
Ab 3	Prevalence of BDV antibodies in psychiatric in-patients, and newly admitted psychiatric, neurological and surgery patients in Germany. MRI scans of psychiatric and surgical patients.	
	CSF testing of further seropositive psychiatric patients, including virus isolation and infectivity in rabbits from two neurological and one psychiatric patient.	18–24
Ab 4	Retrospective prevalence of antibodies to BDV S-antigen amongst different groups of psychiatric, neurological and chronically infected people in different countries and in a control group from the population and blood donors in the US and Europe.	25, 26
Ab 5	Prevalence of antibodies to BDV S-antigen in patients with chronic fatigue syndrome in Germany.	27
Ab 6	Prevalence of antibodies to BDV 24 kDa and 38/40 kDa proteins in affective disorder patients and local healthy comparison subjects in Pennsylvania, USA.	28, 29
Ab 7	A longitudinal prevalence study of antibodies to BDV 38/40 kDa proteins in psychiatric patients in Germany.	30–32
Ab 8	Prevalence of BDV antibodies to gp18 and p40 in people exposed to farmed ostriches and a matched control group of blood donors in Israel.	33
Ab 9	Prevalence BDV antibodies in schizophrenic patients and community controls in Maryland, US and further investigation of deficit syndrome positive and negative patients.	34, 35
Ab 10	Prevalence of BDV antibodies in schizophrenic patients in Pennsylvania, US.	36
Ab 11	Prevalence of BDV antibodies in multiple sclerosis patients in Germany.	37
Ab 12	Prevalence of antibodies to BDV p24 in various HIV infected groups and AIDS patients in Thailand.	38
Ab 13	Prevalence of BDV antibodies in monozygotic twins in the US concordant and discordant for schizophrenia, bipolar depression and other psychoses.	39, 40
Ab 14	Prevalence of BDV antibodies in first episode schizophrenics in the US and seroconversion at 6-month follow-up, and comparison with unspecified controls.	41, 42
Ab 15	Prevalence of antibodies to BDV p40 in schizophrenic patients and healthy medical staff in Japan.	43
Ab 16	Prevalence of BDV antibodies in patients with panic disorder and healthy controls in Vienna, Austria.	44
Ab 17	Prevalence of antibodies to BDV p24 and p40 in Chinese schizophrenic patients, family members, mental health workers and non-psychiatric controls in Taiwan.	45
Ab 18	Prevalence of BDV antibodies in veterinarians practising in Styria, Austria.	46-48
Ab 19	Prevalence of BDV antibodies in patients with a variety of psychiatric, neurological and other disorders and blood donors in Japan.	49

Table 1 Published Borna disease virus (sero)prevalence studies

were detected in a patient with motor neurone disease at a titre of 1/20.⁸⁶ Six blood samples were taken from a patient with somatization disorder and schizophrenia, and whole blood tested for p24 and p40 gene sequences by reverse transcriptive polymerase chain reaction (RT-PCR).⁸⁷ All samples contained both gene sequences.

Prevalence studies

Nineteen of 44 (43%) studies investigated seroprevalence, 11/44 (25%) investigated the prevalence of BDV, and 14/44 (32%) investigated both. Seroprevalence studies have been conducted in USA (5 studies), Germany (3 studies), Austria (2 studies),

Table 2 Summary of seroprevalence and prevalence of Borna disease virus in different study groups

Study group type	Seroprevalence		BDV prevalence	
	Positive studies/total studies	Median (range)	Positive studies/total studies	Median (range)
Unspecified psychiatric in-patients	9/11	7% (0–30%)	6/7	11% (0–54%)
Schizophrenia	10/13	5% (0-45%)	5/13	0% (0-82%)
Major depressive disorder	6/6	4% (1–12%)	1/8	0% (0-40%)
Neurotic, personality, adjustment and mood disorder	3/4	6% (0–15%)	1/1	4% (4%)
Mental disorders relating to alcohol and drugs	2/2	4% (2–5%)		NT
Mental retardation	0/2	0% (0%)		NT
Neurological patients	3/6	1% (0-5%)	1/2	1% (0-2%)
Dementia	0/3	0% (0%)	0/1	0% (0%)
Alzheimer's disease	1/1	1% (1%)	1/3	0% (0–11%)
Multiple sclerosis	1/3	5% (0–13%)	0/1	0% (0%)
Epilepsy	1/1	1% (1–1%)		NT
Parkinson's disease		NT	1/2	8% (0–17%)
Brain tumour		NT	1/1	14% (14%)
Chronic fatigue syndrome	2/4	5% (0-34%)	3/4	12% (0-24%)
HIV/AIDS	8/8	11% (1–48%)		NT
EBV	2/3	1% (0-6%)		NT
Parasitological infections	4/4	8% (5–19%)		NT
Occupational groups	2/3	10% (0-46%)		NT
Other groups	9/13	7% (0–36%)	3/8	0% (0-7%)

NT, none tested.

Table 3 Published studies of the prevalence of viral markers for Borna disease virus

Study code	Study description	Reference
V 1	Prevalence of p40 and p24 gene coding sequences in brain tumour patients in Japan.	50
V 2	Prevalence of p40 antigen and p40 gene coding sequences in brains of patients with histopathological characteristics on an Alzheimer Disease database in California, US.	51
V 3	Prevalence of P gene (p24) coding sequences in brain samples from neuropsychiatric patients and normal controls in North America and Europe.	52
V 4	Prevalence of P gene (p24) coding sequences in brain samples from neuropsychiatric patients and controls in Japan.	53
V 5	Prevalence of p24 gene coding sequences in normal brains at post mortem in Japan.	54
V 6	Prevalence of p40 gene coding sequences in whole peripheral blood and PBMCs from psychiatric patients in various regions of Germany with controls from one region.	55
V 7	Prevalence of p40 gene coding sequences in peripheral blood from blood donors and immunocompromised heart transfusion patients in Germany.	56
V 8	Prevalence of p24 gene coding sequences in PBMCs from patients with mood disorders or schizophrenia, and from age and sex matched blood donors, in Japan.	57
V 9	Prevalence of p40 gene coding sequences in brain, CSF and PBMCs of schizophrenics in US.	58
V 10	Prevalence of p24 gene coding sequences in PBMCs of psychiatric patients with schizophrenia or bipolar disorder in Korea.	59
V 11	Prevalence of unspecified virus gene coding sequences in brain tissue from neuropsychiatric and medical patients and healthy subjects at post mortem.	60

Japan (2 studies), Taiwan, Thailand and Israel (1 study each), and there were multicentre studies involving USA and Germany (2 studies), and USA, Europe and Africa (1 study). The location of one study was not specified. Prevalence studies have been conducted in Japan (4 studies), USA (3 studies), Germany (2 studies), Korea (1 study), and in USA and Europe as a muticentre study. Studies of both seroprevalence and prevalence have been conducted in Japan (8 studies), Germany (3 studies),

UK (1 study), the Netherlands (1 study), and in one multicentre study in USA and Germany. Studies were predominantly of adults, but children were included in one study.

Prevalence in patient groups

A variety of patient groups have been studied (Tables 4 and 5): unspecified psychiatric patients, schizophrenia cases, major depressive disorder,

Table 4 Published studies combining seroprevalence and prevalence of Borna disease viral markers

Study code	Study description	References
AbV 1	Detection of BDV antigens in populations of blood monocytes by flow cytometry in samples from psychiatric patients. Detection of p24 and p40 gene coding sequences in selected antigen positive blood samples, and virus isolated and characterized from further selected samples.	9, 11, 61–63
AbV 2	Prevalence of p24 gene coding sequence in blood donors in two areas of Japan (Sapporo and Tokyo), and prevalence of antibodies to BDV p24 in the Sapporo blood donors.	64
AbV 3	Prevalence of p24 gene coding sequence and prevalence of antibodies to BDV p24 in Japanese psychiatric patients. Sequence variability investigated in cDNA cloned and sequenced from three patients.	65,66
AbV 4	Prevalence of antibodies to BDV p24 in Japanese CFS patients and healthy controls, and prevalence of p24 gene coding sequences in a further group of CFS patients. (Preliminary studies were for prevalence and seroprevalence in a sub-cohort of 25 CFS patients.)	67, 68
AbV 5	Prevalence of p24 gene coding sequence and prevalence of BDV antibodies in psychiatric patients and blood donors in Kumamoto, Japan.	69
AbV 6	Prevalence of antibodies to BDV 16 kDa, 24 kDa and 40 kDa antigens inpsychiatric patients and controls in Hamburg, Germany, and prevalence of p24 and p40 gene coding sequences in a subset of those tested for antibodies.	70
AbV 7	Prevalence of antibodies to BDV p38 in psychiatric patients and controls in Japan and prevalence of p24 gene coding sequences in a subset of these.	71
AbV 8	Prevalence of BDV antibodies and prevalence of p24 gene coding sequence in schizophrenic patients and normal controls in Philadelphia.	72
AbV 9	Prevalence of BDV antibodies and prevalence of p24 gene coding sequences in British CFS patients, those with affective disorders and normal controls. Brain tissue examined for virus.	73, 74
AbV 10	Prevalence of antibodies to BDV p24 and p40 and prevalence of p24 coding sequences in Japanese schizophrenic patients and healthy controls. Some epidemiological data also collected and analysed.	75–78
AbV 11	Prevalence of BDV antibodies and prevalence of BDVp24 and p40 gene coding sequences in CSF of depressive patients and MS patients and healthy controls in Munich, Germany.	79, 80
AbV 12	Prevalence of antibodies to BDV and prevalence of BDV p40 gene coding sequences in Alzheimer and vascular dementia patients and healthy blood donor controls.	81
AbV 13	Only prevalence of BDV antibodies results given.	82
AbV 14	Prevalence of antibodies to BDV p24 in blood donors in towns near Thoroughbred horse farms. 7 antibody positive donors also tested for BDV RNA. Prevalence of BDV p24 gene coding sequence also tested in one group of blood donors.	83

Location	Study number and study group description	Study group seroprevalence	Test sample	Test method	Control group sero-prevalence	Quoted p value
<i>Unspecified psy</i> Japan	Unspecified psychiatric in-patients lapan AbV 3 Unspecified psychiatric in-patients	18/60 (30%)	Blood plasma	Western blot		
Japan	AbV 5	13/33 (24%)	Blood plasma	Indirect IFA		
Germany	Unspecified psychiatric in-patients AbV 6	7/34 (21%)	Blood sera	Western blot	3/203 (2%)	
Germany	Mental disorders (organic ractors) AbV 1 Hemorified ecorbiotric in portione	12/68 (18%)	Blood sera	Double stain IFA		
Germany	Onspectined psychiatric in-patients AbV 6 Unspecified mental disorders	2/20 (10%)	Blood sera	Western blot	3/203 (2%)	
Germany	on admission Ab 3 Hennorified ecochiatric in postimute	68/1003 (7%)	Blood sera	Indirect IFA		
Germany	Ab 3	140/2377 (6%)	Blood sera	Indirect IFA		
Germany	Newly admitted psychiatric in-patients AbV 11 Unenecified neveniatric in-natients	2/128 (2%)				
Germany	Ab 1 Ab 1	4/694 (1%)	Blood sera	Indirect IFA	0/95 (0%)	
Japan	Unspecified psychiatric in-patients Ab 19 Unspecified psychiatric in potients	0/164 (0%)	Blood sera	ECL immunoassay		
Japan	Unspectified psychiatric in-patients Unspecified psychiatric in-patients	0/44 (0%)	Blood plasma	Indirect IFA	0/70 (0%)	
Schizophrenic patients Japan AbV 1 Schizz	atients AbV 10 Schizanhonize	30/67 (45%)	Blood plasma	Western blot	0/26 (0%)	
USA	Schizophremes Ab 9 Schizophrenic sutrostionte	13/90 (14%)	Blood sera	Western blot	0/20 (0%)	0.06
Germany	Schizophreine outpatients AbV 6 Schizophrenia and other psychotic disorders	16/114 (14%)	Blood sera	Western blot	3/203 (2%)	

Table 5 Prevalence of antibodies to Borna disease virus by study group

	<0.005	<0.025 q	
0/22 (0%) 8/277 (3%) 6/29 (21%)	10/917 (1%) 1/40 (3%) 11/540 (2%) 0/70 (0%) 0/10 (0%)	3/203 (2%) 1/117 (1%) 0/105 (0%) 11/483 (2%) 11/540 (2%)	11/483 (2%) 3/203 (2%)
Western blot Western blot IFA Western blot Western blot	ECL immunoassay ELISA Double stain IFA Indirect IFA Western blot	Western blot Western blot Indirect IFA Double stain IFA Double stain IFA	Double stain IFA Western blot
Blood sera Blood sera Not stated Blood sera Blood sera	Blood sera Blood sera Blood plasma Blood plasma	Blood sera Blood sera Blood sera Blood sera Blood sera	Blood sera Blood sera
10/82 (12%) 38/314 (12%) 3/27 (11%) 2/41 (5%) 1/26 (4%)	26/845 (3%) 2/70 (3%) 0/49 (0%) 0/179 (0%) 2/10 (2%)	6/52 (12%) 9/138 (7%) 12/285 (4%) 7/187 (4%) 13/593 (2%)	5/363 (1%) 8/54 (15%)
Ab 14 First episode schizophrenia Ab 17 Chronic schizophrenia AbV13 Male schizophrenic immigrants Ab 10 Schizophrenics Ab 13 Monozygotic twins	concordant schizophrenia Ab 19 Schizophrenics Ab 15 Chronic schizophrenia Ab 2 Schizophrenics AbV 7 Schizophrenics Ab 8	schizophrenics e disorder AbV 6 Affective psychoses and disorder Ab 6 Major depressive disorder Ab 1 Unipolar and bipolar depression Ab 4 Bipolar depression	Depression Ab 4 Unipolar depression Neurotic, personality, adjustment and mood disorder AbV 6 Neurotic, personality, adjustment disorder
USA Taiwan Netherlands USA USA	Japan Japan USA USA	Scnizopr Major depressive disorder Germany AbV 6 Affective USA Ab 6 Major de Major de USA Ab 1 Unipolar USA Ab 4 USA Ab 2 USA Ab 2	USA Germany

BDV and humans

261

(Continued)

Location	Study number and study group description	Study group seroprevalence	Test sample	Test method	Control group sero-prevalence	Quoted <i>p</i> value
Austria	Ab 16 Outprovision to with music disorder	4/55 (7%)	Not stated	Not stated	2/34 (6%)	>0.05 q
Japan	Outpatients with paint disorder Ab 19 Mood disorder	9/251 (4%)	Blood sera	ECL immunoassay	10/917 (1%)	<0.05 q
Japan	Mood disorder Mood disorder	0/123 (0%)	Blood plasma	Indirect IFA	0/70 (0%)	
<i>Mental disor</i> Germany	Mental disorders relating to alcohol and drugs Germany AbV 6 Alcohol Anna related mental disorders	1/22 (5%)	Blood sera	Western blot	3/203 (2%)	
Japan	Ab 19 Alcohol addiction	1/42 (2%)	Blood sera	ECL immunoassay		
Mental retardation Japan Ab 15 Mont	dation Ab 19 Month entrelation	0/25 (0%)	Blood sera	ECL immunoassay		
Germany	AbV 6 Mental retardation	0/2 (0%)	Blood sera	Western blot		
Neurological patients Germany Ab 3	If patients Ab 3 North codmitted matients	87/1791 (5%)	CSF	Indirect IFA		
USA	Newry adminued unspectified patients Ab 4 Doritoborol morrisolomi	4/92 (4%)	Blood sera	Double stain IFA	11/483 (2%)	>0.05 q
Germany	rempretar neurorogy AbV 11 Nouvelogical inconitante	1/102 (1%)	CSF	Indirect IFA	None	
Germany	Ab 4 Dumber on viral anomhalitic	0/54 (0%)	Blood sera	Double stain IFA		
Japan	r unuent flor-virar enceptianus Ab 19 Enconholitic	0/33 (0%)	Blood sera	ECL immunoassay		
Japan	Enceptiaitus Ab 19 Degenerative diseases	0/14 (0%)	Blood sera	ECL immunoassay		

Table 5 Continued

	<0.0001 q		<0.001	(Continued)
4/36 (11%) 4/36 (11%)	11/483 (2%)		1/100 (1%) 0/13 (0%) None 2/103 (2%) None None 11/483 (3%)	
Indirect IFA ECL immunoassay Indirect IFA ECL immunoassay	Double stain IFA Indirect IFA ECL immunoassay	ECL immunoassay	ELISA Western blot Double stain IFA ECL immunoassay ELISA ELISA ELISA Double stain IFA	
Blood plasma Blood sera Blood plasma Blood sera	Blood sera CSF and blood sera Blood sera	Blood sera	Blood plasma or sera Blood sera Blood sera Blood sera Blood sera Blood sera Blood sera	
0/10 (0%) 0/46 (0%) 0/10 (0%) 1/89 (1%)	15/114 (13%) 0/50 (0%) 0/67 (0%)	3/214 (1%)	30/89 (34%) 2/21 (10%) 0/50 (0%) 0/75 (0%) 24/50 (48%) 12/67 (18%) 9/60 (15%) 34/244 (14%)	
AbV 12 Vascular dementia patients Ab 19 Vascular dementia AbV 12 Dementia patients Alzheimer's disease Alzheimer's disease	<i>osis</i> Ab 4 Multiple sclerosis Ab 11 Multiple sclerosis Ab 19 Multiple sclerosis	Ab 19 Epilepsy	<i>Le syndrome</i> AbV 4 AbV 4 Chronic fatigue syndrome Ab 5 Chronic fatigue syndrome Ab 19 Chronic fatigue syndrome Ab 12 Ab	
Dementia Japan AbV 1 Vascu Japan Ab 19 Vascu Vascu Japan AbV 1 Demei Japan Ab 19 Japan Alzhei	Multiple sclerosis Germany Ab Mul Germany Ab Japan Ab Japan Ab	Epilepsy Japan	Chronic fatigue syndrome Japan AbV 4 Chronic fatig UK AbV 9 Chronic fatig Germany Ab 5 Chronic fatig HIV/AIDS Thailand Ab 12 HIV Clade E HIV Clade E HIV Clade E AlDS patient AlDS patient Ab 12 AlDS patient AlDS pa	

BDV and humans

Downloaded from http://qjmed.oxfordjournals.org by on April 21, 2010

263

Location	Study number and study group description	Study group seroprevalence	Test sample	Test method	Control group sero-prevalence	Quoted p value
Germany	Ab 4 LINZ antibodiz scoli	61/751 (8%)	Blood sera	Double stain IFA	11/483 (3%)	
Germany	rtiv antibody peak Ab 2 Liny	36/460 (8%)	Blood sera	Double stain IFA	11/540 (2%)	
Germany	HIV antibody Ab 4	12/273 (4%)	Blood sera	Double stain IFA	11/483 (3%)	
Japan	HIV anupody start Ab 19 HIV including AIDS	1/85 (1%)	Blood sera	ECL immunoassay		
Epstein Barr syndrome Germany Ab 4	Ab 4	9/160 (6%)	Blood sera	Double stain IFA	11/483 (3%)	
Germany	Children Ab 4 Adulta	1/89 (1%)	Blood sera	Double stain IFA	11/483 (3%)	
Germany	Aduits Ab 2 EBV	0/24 (0%)	Blood sera	Double stain IFA		
Parasitological infections East Africa Ab 4	ıl infections Ab 4	9/48 (19%)	Blood sera	Double stain IFA	11/483 (3%)	<0.0001
East Africa	Children with schistosomiasis and malaria Ab 4	1/12 (8%)	Blood sera	Double stain IFA	11/483 (3%)	<0.05
East Africa	Children with schistosomiasis or malaria Ab 4	10/145 (7%)	Blood sera	Double stain IFA	11/483 (3%)	<0.01
East Africa	Adults with schistosomiasis and malaria Ab 4 Adults with schistosomiasis or malaria	4/81 (5%)	Blood sera	Double stain IFA	11/483 (3%)	<0.05
Occupational groups Israel Ab 8	Broups Ab 8 Moderneed and another	19/41 (46%)	Blood sera	ELISA	4/41 (10%)	<0.0001
Taiwan	VVORKETS exposed to ostricnes Ab 17	8/82 (10%)	Blood sera	Western blot		
Austria	Mental health workers Ab 18 Veterinarians	0/137 (0%)	Blood sera	Indirect IFA		

Table 5 Continued

264

Downloaded from http://qjmed.oxfordjournals.org by on April 21, 2010

			<0.05				>0.05					
		8/22 (36%) maior depression	1/100 (1%)		2/125 (2%) HIV negative non-drug abusers		10/917 (1%)					
Western blot	Western blot	Double stain IFA	ELISA	ECL immunoassay	Double stain IFA	Indirect IFA	ECL immunoassay	ELISA	Western blot	Western blot	ECL immunoassay	ECL immunoassay
Blood sera	Blood sera	Blood sera	Blood sera	Blood sera	Blood sera	Blood sera	Blood sera	Blood sera	Blood sera	Blood sera	Blood sera	Blood sera
9/25 (36%) affected subjects 5/25 (20%) unaffected subjects	16/132 (21%)	14/71 (20%)	36/428 (8%)	3/66 (5%)	4/106 (4%)	20/569 (4%)	19/1393 (1%)	1/100 (1%)	0/8 (0%) affected subjects 0/8 (0%) unaffected subjects	0/16 (0%)	0/50 (0%)	0/17 (0%)
Ab 13 Twenty five pairs of monozygotic twins discordant for schizophrenia	Ab 17 Eamily members of schizonbrenic natients	Ab 7 Securentially tested nsychiatric in-natients	AbV 14 Blood donors from horse rearing area	Ab 19 Multi-transfused patients	Ab 2 HIV-antibody-negative drug abusers	Ab 3	Newly admitted surgery patients Ab 19 Ocular diseases	AbV 2 Blood donors	Ab 13 Eight pairs monozygotic twins discordant for bipolar disorder	Ab 13 Eight pairs normal monozyantic twins	digite paris normar monozygoue, ewins Ab 19 Autoimmune disease	Ab 19 Leprosy
Other groups USA	Taiwan	Germany	Japan	Japan	Germany	Germany	Japan	Japan	USA	NSA	Japan	Japan

other psychiatric disorders, neurology patients, dementia/Alzheimer's disease, multiple sclerosis, epilepsy and chronic fatigue syndrome, HIV/AIDS, EBV, parasitological infections and occupational groups. Five groups of monozygotic twins, concordant and discordant for schizophrenia and other disorders, have been studied. Patient groups were defined by internationally recognized criteria (Research Diagnostic Criteria, ICD codes, DSM codes or CDC guidelines) in 18/44 (41%) studies. Control or comparison groups were either from the local community or blood donors.

Prevalence and seroprevalence varied widely (Table 6) from 0% (no evidence of infection), while the highest seroprevalence in a single study group was 48% in 50 HIV Clade E patients with STDs in Thailand. The highest prevalence of virus was 82% in 11 brains of schizophrenic patients. However this is an outlying result, and the median for this patient group was 0%. Median seroprevalence figures were highest (11%) in HIV/AIDS patients, and the highest median prevalence was 13% in astrocytic brain tumours, although this was a single study.

Laboratory methods

Seroprevalence was mainly investigated by the detection of antibodies in serum or plasma (28 studies) but also in CSF and sera (2 studies), CSF only (1 study) and unspecified material (2 studies) (Table 4). Studies for genetic markers and viral antigens have been sought mainly in peripheral blood and PBMCs or leukocytes (PBLs) (15 studies), brain tissue (7 studies), CSF (1 study) and CSF, brain and blood (2 studies) (Table 5).

The laboratory methods used to test for BDV antibodies were: indirect immunofluorescence antibody/assay (IFA) (10 studies), double stain IFA (5 studies), Western blot using viral proteins (6 studies), Western blot using recombinant proteins (4 studies), enzyme-linked immunosorbent assay using recombinant proteins (recombinant ELISA) (4 studies), recombinant reverse type (RT) sandwich ELISA (1 study), electrochemiluminescence assay (1 study), and direct IFA (1 study); in one study, the method was not stated.

Test methods for antigens or genetic markers were immunohistochemistry with nested PCR (1 study), flow cytometry (1 study), enzyme immunoassay (EIA) (1 study), EIA with nested RT-PCR (1 study), and RT-PCR (3 studies). The most frequently used was nested RT-PCR for p24 and/or p40 gene sequences (17 studies).

Issues of sensitivity and specificity, reproducibility and reliability were rarely addressed. A second test was usually used for confirmation of antibody tests (Western blotting), and genetic markers were confirmed by Southern blotting, immunohistochemistry, competition experiments, *in-situ* hybridization and direct sequencing.

Discussion

The neurological or psychiatric symptoms of human patients studied for Borna disease are clinically diverse, and given the frequently multifactorial aetiology of mental illness, an alternative explanation would be possible for all of these cases. The presence of markers of BDV infection in a clinically ill patient cannot infer causation (see reference 88). Indeed, individuals may be predisposed to BDV infection because of altered immunocompetence during repeated affective episodes.¹² Clinical case studies, however, are valuable for generating hypotheses that should be tested further in systematic epidemiological studies. These patients also provide the opportunity for molecular studies and characterisation of virus isolates.

Seroprevalence studies provide information and evidence of exposure to BDV, while prevalence studies measure the proportion of current infection. Many such studies have been carried out, in a variety of patient groups most usually selected by a clinical illness. However, while simple in their design, the validity of these studies is dependent on the sensitivity, specificity and reproducibility both of the diagnostic tests performed and of the diagnostic criteria used in the classification of patients. A wide range of seroprevalence even within specific clinical groups has been demonstrated, which may reflect geographical variation in prevalence, selection bias, or the different laboratory methods used. Median seroprevalence was highest for unspecified psychiatric in-patients (7%), neurotic, personality adjustment and mood disorder patients (6%), schizophrenics (5%) and patients with chronic fatigue syndrome (5%). These data might indicate a direction for future epidemiological studies. It is also of note that at least one person tested seropositive in every clinical group examined, except for those patients suffering from mental retardation and dementia. Other groups have been examined, probably opportunistically, such as children and adults with parasitological infections and HIV patients. Any other rationale for screening such patient groups is unclear.

Prevalence studies are usually of limited value in aetiological research, since prevalence reflects both the incidence and probability of surviving the disease.⁸⁸ In these studies, incident mental illness is the outcome and previous exposure to BDV is the exposure of interest. To conclude that BDV has a role in any of these clinical syndromes requires that the prevalence in these groups (cases) be compared with the prevalence in another 'healthy' or 'non-case' group (controls). The outcome of such a study would be a measure of the strength of association between having a marker for BDV exposure and/or infection and being in a certain clinical group, conventionally expressed as an odds ratio. However, the odds ratio calculated in a casecontrol study will be a biased estimate unless the controls selected are representative of the population that are well, but could become cases. We have carried out a quantitative systematic review but have not attempted any meta-analysis methods (see reference 89). As it was unlikely that the same disease diagnostic criteria were applied across studies, and because of the variation in selection of controls, no attempt has been made to combine data from individual studies to calculate summary odds ratios. In many published BDV seroprevalence studies, there was not enough information provided on the selection of controls for the reader to assess whether they represented well individuals belonging to at-risk populations. In some studies the 'control' group should be considered a 'comparison' group, and was often small. In most studies, odds ratios were not calculated. Chen et al.45 reported a positive association between presence of BDV antibodies and schizophrenia in Chinese patients from Taiwan and presented their results as an odds ratio (odds ratio 4.63, 95%CI 2.25-9.52).

Few studies have attempted to investigate possible sources of human exposure to BDV. One published study³³ found high seroprevalence in those exposed to ostriches (46%), but did not investigate possible confounding factors that may be associated both with handling ostriches and exposure to BDV, such as contact with other farm animals. Takahashi et al.⁸³ found a high seropositive rate in people living near horse farms. For some individual cases, animal exposure histories have been reported together with the results of the sampling of animal contacts (e.g. reference 84). Histories of exposure to seropositive animals or animals with a history of Borna disease is important in assessing putative human cases. Further epidemiological studies could be carried out to identify possible exposures to BDV. Further animal studies would also prove useful to establish the host range and assess possible modes of transmission of the virus, including vectors or reservoirs of infection. Also of interest would be any links between reported human cases. Chen et al.45 also found higher BDV seroprevalence in first degree relatives of schizophrenic patients and mental health workers. This raises the possibility of person-to-person transmission, but could also be the result of bias in selection of controls and/or confounding factors. Family clusters of Borna disease have been reported from Germany⁸⁴ and the identification and follow-up of such clusters could prove useful in providing further information on the zoonotic potential of BDV. Cases in the published literature attributed to infection with BDV have been from the geographical areas in central Europe where Borna disease is endemic in animals. Whilst this would appear consistent with the hypothesis that Borna disease is a zoonosis, it may simply be the result of ascertainment or publication bias.

There does appear to be evidence that people are exposed to BDV, or at least have antibodies that are reactive to BDV antigens. However, while a number of seroprevalence studies have been done, it is still difficult to conclude much about which population groups are most at risk and the natural history of human infection. Longitudinal studies are necessary to follow the serological response and clinical course in patients identified as antibody positive. Evidence that humans are infected with BDV, or a BDV-like virus, rather than exposed, is even more controversial. Conflicting results have arisen and evidence of infection or exposure by the detection of viral markers or antibodies, is not consistently linked to one currently defined disease in humans. Some results show that BDV RNA is detected in the absence of antibodies in serum, further complicating matters.

An agreed gold standard diagnostic test for BDV is lacking, and there is speculation concerning the specificity of the tests currently used. It has been suggested that PCR positives are the result of laboratory contamination.^{90,91} Further investigations have revealed novel isolates that may not amplify with previously described markers, and variation may be greater than previously thought.⁹² Multicentre studies have tested the same samples in a number of different laboratories by a number of different methods but this has been performed in order to confirm a result rather than to validate tests in terms of their sensitivity and specificity, reproducibility and reliability. Of course, it is not possible to validate tests using populations of known cases and controls, because is not yet clear what criteria should be used to define a human case. A well-validated blood test would appear to be the most suitable test for epidemiological studies. Certainly there are practical difficulties in using brain tissue or CSF. In the absence of consensus as to the validity, it would appear that an antibody test

Location	Study number, study group description	Tissue tested	Prevalence in study group	Test method	Prevalence in control group
Unspecified psychiatric in-patients	ic in-patients				
Germany	AbV 1 Chronic mental illness	PBMCs	37/68 (54%)	Flow cytometry	
Germany	AbV 6 Acuteot of neurohistric nations	PBMCs	13/26 (50%)	Nested RT-PCR	0/23 (0%)
Japan	A subset of psychiautic paucius AbV 3 Developments	PBMCs	22/60 (37%)	Nested RT-PCR	
Japan	rsychiautic inpauents AbV 5 Devehistric potionte	PBMCs	6/55 (11%)	Nested RT-PCR	
Germany	r sychiatric patients AbV 11 Pevchiatric innatients	CSF	3/128 (2%)	EIA	
Japan	AbV 7 As subset of nevering	PBMCs	2/106 (2%)	RT-PCR	0/12 (0%)
Germany	V 6 V 6 Psychiatric disorders	Whole blood	0/39 (0%)	Nested RT-PCR	
Schizophrenia and ot	her psychotic disorders				
Europe and US	Europe and US V 3 Schizonhranic	Brain	9/11 (82%)	Nested RT-PCR	0/10 (0%)
Japan	Schizophenic Cchizophenic	Brain	3/9 (33%)	Nested RT-PCR	2/31 (7%)
Japan	Schizophrenic AbV 10 Schizonhrenia natients	Whole blood	6/67 (9%)	Nested RT-PCR	
Japan	V 8 Schizophrenic	PBMCs	3/77 (4%)	Nested RT-PCR	
Germany	V 6 Schizonhranic	Whole blood	0/59 (0%)	Nested RT-PCR	
Germany	Schizophrenic V 6 Schizoffortivo disordor	Whole blood	0/10 (0%)	Nested RT-PCR	
Germany	ounizoanecuve uisoruer V 6 Schizonhranic	Blood/PBMCs	0/20 (0%)	Nested RT-PCR	
NS	Schizophrenic Schizophrenic	CSF	0/48 (0%)	Cell culture and nested RT-PCR EIA	

Table 6 Prevalence of Borna disease virus, by study group

268

Downloaded from http://qjmed.oxfordjournals.org by on April 21, 2010

					0/10 (0%)	0/10 (0%)										(Continued)
Nested RT-PCR EIA	Nested RT-PCR	Nested RT-PCR	RT-PCR	RT-PCR	Nested RT-PCR	Nested RT-PCR	Nested RT-PCR	Nested RT-PCR	Nested RT-PCR	Nested RT-PCR	RT-PCR	Nested RT-PCR	Nested RT-PCR	EIA	RT-PCR	
0/3	0/2	0/39 (0%)	0/16 (0%)	2/10 (20%) in 1 lab, 0/10 (0%) in 2 other labs	2/5 (40%)	0/6 (0%)	0/41 (0%)	0/10 (0%)	0/33 (0%)	(%0) 6/0	0/5 (0%)	0/8 (0%)	2/49 (4%)	2/102 (2%)	0/17 (0%)	
Brain	Brain	Not stated	Brain	PBLs	Brain	Brain	Whole blood/PBMCs	Whole blood/PBMCs	CSF/Brain/PBMCs	Not stated	Brain	PBMCs	PBMCs	CSF	Brain	
V 9 Schimmhania	Scritzoprireriic V 3 Pouchais discudae	Psychotic alsoraer V 10 Sobionabronio	V 11 V 11 V V V V V V V V V V V V V V V	schizophrenic AbV 8 Schizophrenic patients	lisorder V 3 Picceler Jicceder	bipolar alsoraer V 3 Major donacci o dicondar	Vajor depressive disorder V 6	Major depressive disorder V 6 Biscolar disordar		bipolar disorder V 10	Major depression V 11 Affortion disortion	AbV 9 Severe depression	Neurotic, personality, adjustment and mood disorder V 8 Mood disorder patients Neurological regionts		Neurological Inpatients V 11 Neurological disorder	
US	Europe and US	Korea	NS	US	Major depressive disorder Europe and US V 3	Europe and US	Germany	Germany	NS	Korea	US	UK	Neurotic, personali Japan	Germany	US	

269

ladie o Continuea					
Location	Study number, study group description	Tissue tested	Prevalence in study group	Test method	Prevalence in control group
Dementia					
Japan	AbV 12 Vascular dementia patients	PBMCs	0/10 (0%)	Nested RT-PCR	0/36 (0%)
Europe and US	Multiple sclerosis V 3 Multiple sclerosis	Brain	0/5 (0%)	Nested RT-PCR	0/10 (0%)
Alzheimer's disease		2 2 2	(7001) 12/1	lmm.inohietochomietw.	
Europe and US	V 2 Alzheimer's disease V 3	Brain	0/19 (0%)	Nested RT-PCR	0/10 (0%)
Japan	Alzheimer's disease AbV 12 Alzheimer's disease	PBMCs	0/10 (0%)	Nested RT-PCR	0/36 (0%)
Parkinson's disease					
Japan	V 4 Daulinaanse diamaa	Brain	1/6 (17%)	Nested RT-PCR	2/31 (7%)
Europe and US	rankinson's disease V 3 Parkinson's disease	Brain	0/11 (0%)	Nested RT-PCR	0/10 (0%)
<i>Brain tumours</i> Japan	V1 Astrocytic tumours	Brain tumours	5/37 (14%)	Nested RT-PCR	None
Chronic fatigue syndrome Japan	ie AbV 4 Sub-cohort of CFS patients	PBMC	6/25 (24%)	Nested RT-PCR	

Table 6 Continued

270

R.M. Chalmers et al.

Downloaded from http://qjmed.oxfordjournals.org by on April 21, 2010

0/10 (0%) CSF 0/31 (0%)					
Nested RT-PCR Nested RT-PCR Nested RT-PCR	Nested RT-PCR Nested RT-PCR	Nested RT-PCR RT-PCR	Cell culture and nested RT-PCR EIA	RT-PCR	K1-PCK Nested RT-PCR
7/57 (12%) 1/10 (10%) 0/21 (0%)	2/30 (7%) 5/100 (5%)	3/72 (4%) 0/200 (0%)	0/18 (0%) 0/18 (0%)	0/27 (0%)	0/20 (0%) 0/500 (0%)
PBMC CSF Sera/PBMC	Brain PBMCs	PBMCs Blood	CSF PBMCs	Brain	Blood
AbV4 Further cohort of CFS patients AbV 9 Subset of CSF from CFS patients AbV 9 CFS patients	V 5 Normal brains at post mortem AbV 2 Blood donors	AbV 2 Blood donors V 7 Blood donors	V 9 Nine sets monozygotic twins	uiscondain foi ochizophileina V 11 Medical patients	V 11 Healthy subjects V 7 Immunosuppressed heart transplant patients
Japan UK UK	<i>Other groups</i> Japan Japan	US Germany	US	US 	US Germany

would be the most suitable test by which to screen large population samples. A 'gold-standard' serological test for Borna disease virus should be developed that is suitable for testing animal and human samples in epidemiological studies. Clinical specimens should be swapped between experts, and data should be gathered on the sensitivity, specificity and reproducibility of any such 'gold-standard' developed. This might be most feasible using sera from clinical cases of Borna disease in animals.

The hypothesis that Borna disease is a zoonosis merits serious consideration and is worthy of further investigation.

Acknowledgements

This research was funded by the Health and Safety Executive (Project number: 3490/R52.118).

References

- Zwick W. Borna'sche Krankheit und enzephalomyelitis der Tiere. In: Gildemeister F, Hagen E, Waldmann O, eds. *Handbuch der Viruserkrankungen*, Vol. 2. Jena, VEB Fischer Verlag, 1939:254–354.
- Richt J, Pfeuffer I, Christ M, Frese K, Bechter K, Herzog S. Borna Disease Virus infection in animals and humans. *Emerg Infect Dis* 1997; 3:343–52.
- Gosztonyi G, Ludwig H. Borna disease of horses. Acta Neuropathol 1984; 64:213–21.
- 4. Gonzalez-Dunia D, Sauder C, de la Torre JC. Borna Disease Virus and the brain. *Brain Res Bull* 1997; **44**:647–64.
- Hatalski CG, Lewis AJ, Lipkin WI. Borna Disease. Emerg Infect Dis 1997; 3:129–35.
- Richt JA, Herzog S, Haberzettl K, Rott R. Demonstration of Borna disease virus-specific RNA in secretions of naturally infected horses by the polymerase chain reaction. *Med Microbiol Immunol* 1993; 182:293–304.
- Herzog S, Frese K, Richt JA, Rott R. Ein beitrag zur epizootiologie der Bornaschen krankheit blim Pferd. *Wien Tierarztl Mschr* 1994; 81:374–9.
- 8. Cubitt B, de la Torre C. Borna Disease virus (BDV) a nonsegmented RNA virus, replicates in the nuclei of infected cells where infectious BDV ribonucleoproteins are present. *J Virol* 1994; **68**:1371–81.
- 9. Bode L, Steinbach F, Ludwig H. A novel marker for Borna disease virus infection. *Lancet* 1994; 343:297–8.
- Sierra-Honigmann AM, Rubin SA, Estafanous MG, Yolken RH, Carbone KM. Borna disease virus in peripheral blood mononuclear and bone marrow cells of neonatally and chronically infected rats. *J Neuroimmunol* 1993; **45**:31–6.
- 11. Bode L, Zimmermann W, Ferszt R, Steinbach F, Ludwig H. Borna disease virus genome transcribed and expressed in psychiatric patients. *Nat Med* 1995; **1**:232–6.
- Amsterdam JD, Winokur H, Dyson W, Herzog S, Rott R, Koprowski H. Borna disease virus: a possible etiologic factor in human affective disorders? *Arch Gen Psychiatry* 1985; 42:1093–6.

- Ludwig H, Furuya K, Bode L, Durrwald R, Lee DS. Biology and neurobiology of Borna disease virus (BDV), defined by antibodies, neutralizability and their pathogenic potential. *Arch Virol* 1993; 7:111–33.
- Mulrow CD. Rationale for systematic reviews. Br Med J 1994; 309:597–9.
- Anon. 1st UK Workshop on Borna Disease Virus, Rhondda, Wales, UK, March 2000. [http://www.phls.wales.nhs.uk/ bconproc.htm].
- Rott R, Herzog S, Fleischer B, Winokur H, Amsterdam J, Dyson W, *et al.* Detection of serum antibodies to Borna disease virus in patients with psychiatric disorders. *Science* 1985; **228**:755–6.
- Bode L, Riegel S, Ludwig H, Amsterdam JD, Lange W, Koprowski H. Borna disease virus-specific antibodies in patients with HIV infection and with mental disorders. *Lancet* 1988; ii:689.
- Bechter K, Herzog S, Fleischer B, Schutteler, R Rott. Magnetic resonance imaging in psychiatric patients, with and without serum antibodies against Borna Disease. *Der Nervenarzt* 1987; 58:617–24.
- Bechter K, Herzog S, Schuttler R, Rott R. Die Borna'sche Krankheit-wahrscheinlich auch eine menschliche Krankheit:neue Ergebnisse. In: Saletu B, ed. *Biologische Psychiatrie.* Stuttgart, Thieme, 1989:17–21.
- Rott R, Herzog S, Bechter K, Frese K. Borna Disease, a possible hazard for man? Arch Virol 1991; 118:143–9.
- Bechter K, Herzog S, Schuttler R. Possible significance of Borna Disease for humans. *Neurol Psychiat Brain Res* 1992; 1:23–9.
- Bechter K, Bauer M, Hestler HC, Rott R. English title: MRI findings in Borna Disease Virus seropositive psychiatric patients and controls: and extended study. *Der Nervenarzt* 1994; 65:169–74.
- Bechter K, Herzog S, Behr W, Schuttler R. Investigations of cerebrospinal fluid in Borna disease virus seropositive psychiatric patients. *Eurp Psychiat* 1995; 10:250–8.
- Bechter K, Herzog S, Schuttler R. Borna Disease Virus (BDV)—possible cause of a spectrum of human neuropsychiatric disorders. *Pharmacopsychiat* 1997; **30**:151 (proc 20th symposium AGNP, Nuremberg 1997).
- Bode L, Riegel S, Czech G, Lange W, Ludvig H. Increased incidence of Borna Disease Virus infection in chronically diseased patients. Abstract, VIIIth Int Congress of Virol Berlin 26–29th August 1990.
- Bode L, Riegel S, Lange W, Ludwig H. Human infections with Borna Disease Virus: seroprevalence in patients with chronic diseases and healthy individuals. *J Med Virol* 1992; 36: 309–15.
- 27. Bode L, Komaroff AL, Ludwig H. No serologic evidence of Borna Disease Virus in patients with Chronic Fatigue Syndrome. *Clin Infect Dis* 1992; **15**:1049.
- Amsterdam JD Fu ZF Dietzschold B. Anti-Borna Disease (BD) Virus-specific antibodies in depressed patients measured by Western immunoblot technique. *Biolog Psychiat* 1992; 31:102A.
- Fu ZF, Amsterdam JD, Kao M, Shankar V, Koprowski H, Dietzschold B. Detection of Borna Disease virus-reactive antibodies from patients with affective disorders by Western immunoblot technique. J Affect Dis 1993; 27:61–8.
- 30. Bode L, Querfurth H, Ferszt R, Gosztonyi G, Rigas N, Czech G, *et al.* Antibodies to Borna disease virus are

four times as frequent in depressives as in controls. In: *Wissenschaftswoche 1991, Forschungsprojekte am Klinikum Steglitz, Freie Universitat Berlin.* Berlin, Freie Universitat Berlin, 1991:269–71.

- Bode L, Czech G, Ferszt R, Ludwig H. Bornavirus-Infektion beim Menschen: eine neue Zoonose? In: Bericht des 4. Hohenheimer Seminars'Aktuelle Zoonosen, Sept 16–17, 1992, Stuttgart. Giessen, Deutsche Veterinarmedizinische Gesellschaft (DVG), 1992:138–47.
- Bode L, Ferszt R, Czech G. Borna Disease virus infection and affective disorders in man. *Arch Virol* 1993; 7(suppl.): 159–67.
- Weisman Y, Huminer D, Malkinson M, Meir R, Kliche S, Lipkin WI, et al. Borna disease virus antibodies among workers exposed to infected ostriches. *Lancet* 1994; 344: 1232–3.
- 34. Waltrip RW, Buchanan RW, Summerfelt A, Breier A, Carpenter WT, Bryant NL, *et al.* Borna disease virus and schizophrenia. *Psych Res* 1995; **56**:33–44.
- Waltrip RW, Buchanan RW, Carpenter WT, Kirkpatrick B, Summerfelt A, Breier A, et al. Borna Disease Virus antibodies and the deficit syndrome of schizophrenia. *Schizophr Res* 1997; 23:253–7.
- Pelle M, Alexander RC, Fu ZF, Dietzschold B, Koprowski H. Borna Disease Antibodies in Schizophrenia. *Schizophr Res* 1995; 15:189.
- Kitze B, Herzog S, Rieckmann P, Poser S, Richt J. No evidence of Borna disease virus-specific antibodies in multiple sclerosis patients in Germany. J Neurol 1996; 243:660–2.
- 38. Auwanit W, Ayuthaya PIN, Nakaya T, Fujiwara S, Kurata T, Yamanishi K, et al. Unusually high seroprevalence of Borna Disease Virus in Clade E human immunodeficiency virus type 1-infected patients with sexually transmitted diseases in Thailand. Clin Diag Lab Immunol 1996; 3:590–3.
- Waltrip RW, Torrey EF, King LR, Weinberger DR, Rickler KC, Rubin SA, *et al.* Borna Disease Virus correlates in schizophrenia—monozygotic twin study cohort. *Soc Neurosci* 1995; **21**:748.
- Waltrip RW, Torrey EF, King LR, Weinberger DR, Rickler KC, Rubin SA, *et al.* Schizpohrenia, Borna Disease, and neurological signs in a monozygotic twin study cohort. *Biolog Psych* 1996; **39**:500–666.
- Waltrip RW, Lieberman J, Robinson D, Bilder RM, Alvir JM, King LR, *et al.* First episode schizophrenia and Borna Disease Virus. *Schizophr Res* 1997; 24:261.
- Waltrip RW, Lieberman J, Robinson D, Bilder RM, Alvir JM, King LR, et al. Borna Disease Virus seroconversion in first episode schizophrenia. *Biol Psychiatry* 1997; 41:1–120S.
- Horimoto T, Takahashi H, Sakaguchi M, Horikoshi K, Iritani S, Kazamatsuri H, et al. A reverse-type sandwich enzymelinked immunosorbent assay for detecting antibodies to Borna Disease Virus. J of Clin Microbiol 1997; 35:1661–6.
- 44. Nowotny N, Windhaber J. Borna Disease Virus and neurospychiatric disorders. *Lancet* 1997; **350**:594.
- 45. Chen C-H, Chiu Y-L, Wei F-C, Koong F-J, Liu H-C, Shaw C-K, et al. High seroprevalence of Borna virus infection in schizophrenic patients, family members and mental health workers in Taiwan. *Mol Psych* 1999; **4**:33–8.
- 46. Deutz A, Fuchs K, Hinterdorfer F, Schuller W. Serological examination of veterinarians for zoonoses. Paper 1: Basic data and prevalence of antibodies against bacterial zoonoses. *Wien Tierarztl Mschr* 1996; 83:283–8.

- Deutz A, Fuchs K, Nowotny N, Schuller W. Serological examination on zoonoses in veterinarians. Part III: Prevalence of antibodies to viral zoonoses and prophylaxis. *Wien Tierarztl Mschr* 1997; 84:211–19.
- Nowotny N, Deutz A, Fichs K, Schuller W, Hinterdorfer F, Auer H, et al. Prevalence of swine influenza and other viral, bacterial and parasitic zoonoses in veterinarians. *J Infect Dis* 1997; **176**:1414–15.
- 49. Yamaguchi K, Sawada T, Tohru N, Igata-Yi R, Shiraki H, Horii Y, et al. Detection of Borna Disease virus-reactive antibodies from patients with psychiatric disorders and from horses by electrochemiluminescence immunoassay. *Clin Diag Lab Immunol* 1999; **6**:696–700.
- 50. Nakaya T, Tada M, Takahashi H, Fujiwara S, Sakuma S, Sawamura Y, *et al.* Expression of Borna Disease Virus messages in clinical samples from patients with brain malignant tumours. Proc. *Japan Acad* 1996; **72(b)**:157–62.
- De la Torre JC, Gonzales-Dunia D, Cubitt B, Mallory M, Mueller-Lantzch N, Grasser FA, *et al.* Detection of Borna Disease Virus antigen and RNA in human autopsy brain samples from neuropsychiatric patients. *Virol* 1996; 223: 272–82.
- 52. Salvatore M, Morzunov S, Schwemmle M, Lipkin W and the Borna Virus study Group. Borna disease virus in brains of North American and European people with schizophrenia and bipolar disorder. *Lancet* 1997; **349**:1813–14.
- 53. Haga S, Motoi Y, Ikeda K, and the Japanese Bornavirus study group. Borna disease virus and neuropsychiatric disorders. *Lancet* 1997; **350**:593.
- Haga S, Yoshimura M, Motoi Y, Arima K, Aizawa T, Ikuta K, et al. Detection of Borna disease virus genome in normal human brain tissue. *Brain Res* 1997; 770:307–9.
- 55. Lieb K, Hallensleben W, Czygan M, Stitz L, Staeheli P, and the Bornavirus study Group. No Borna disease virus-specific RNA detected in blood from psychiatric patients in different regions of Germany. *Lancet* 1997; **350**:1002.
- Wolff C, Boomgaarden M, Koster-Eiserfunke W, Kleesiek K. Two years of experience with PCR screening of individual blood donations. *Infusion Therapy and Transfusion Medicine* 1998; 25:128–34.
- 57. Iwata Y, Takahashi K, Peng X, Fukuda K, Ohno K, Ogawa T et al., Detection and sequence analysis of Borna disease virus p24 RNA from peripheral blood mononuclear cells of patients with mood disorders or schizophrenia and of blood donors. J Virol 1998; 72:10044–9.
- Sierra-Honigmann AM, Carbone KM, Yolken RH. Polymerase chain reaction (PCR) search for viral nucleic acid sequences in schizophrenia. *Br J Psych* 1995; 166:55–60.
- 59. Kim YK, Kim SH, Choi SH, Ko YH, Kim L, Lee MS et al., Failure to demonstrate Borna disease virus genome in peripheral blood mononuclear cells from psychiatric patients in Korea. *Journal of Neuro Virol* 1999; 5:196–9.
- Shanker V, Dietzschold B, Fu ZF, Amsterdam J. A search for Bornavirus-specific genome in human nerve tissue by reverse transcriptase polymerase chain reaction (RT-PCR). *Biol Psych* 1992; 31:103A.
- Bode L. Human infections with Borna Disease Virus and potential pathogenic implications. *Curr Top Microbiol Immunol* 1995; **190**:103–30.
- Bode L, Durrwald R, Rantam FA, Ferszt R, Ludwig H. First isolates of infectious human Borna Disease Virus from patients with mood disorders. *Mol Psych* 1996; 1:200–12.

- 63. De la Torre JC, Bode L, Durrwald R, Cubitt B, Ludwig H. Sequence characterisation of human Borna Disease virus. *Virus Res* 1996; **44**:33–44.
- 64. Kishi M, Nakaya T, Yurie N, Kakinuma M, Takahashi TA, Sekiguchi S, *et al.* Prevalence of Borna disease virus RNA in peripheral blood mononuclear cells from blood donors. *Med Microbiol Immunol* 1995; **184**:135–8.
- 65. Kishi M, Nakaya T, Nakamura Y, Zhong Q, Ikeda K, Senjo M, *et al.* Demonstration of human Borna disease virus RNA in human peripheral blood mononuclear cells. *FEBS Letters* 1995; **364**:293–7.
- 66. Kishi M, Arimura Y, Ikuta K, Shoya Y, Lai PK, Kakinuma M. Sequence variability of Borna Disease Virus open reading frame II found in human peripheral blood mononuclear cells. *J Virol* 1996; **70**:635–40.
- Kitani T, Kuratsune H, Fuke I, Nakamura Y, Nakaya T, Asahi S, et al. Possible correlation between Borna disease virus infection and Japanese patients with chronic fatigue syndrome. *Microbiol Immunol* 1996; 40:459–62.
- Nakaya T, Takahashi H, Nakamura Y, Asahi S, Tobiume M, Kuratsune H, *et al.* Demonstration of Borna disease virus RNA in peripheral blood mononuclear cells derived from Japanese patients with chronic fatigue syndrome. *FEMS Lett* 1996; **378**:145–9.
- 69. Igata-Yi R, Yamaguchi K, Yoshiki K, Takemoto S, Yamasaki H, Matsuoka M, *et al.* Borna disease virus and the consumption of raw horse meat. *Nat Med* 1996; **2**:948–9.
- Sauder C, Muller A, Cubitt B, Mayer J, Steinmetz J, Trabert W, et al. Detection of Borna Disease Virus (BDV) antibodies and BDV RNA in psychiatric patients: evidence for high sequence conservation of human blood-derived BDV RNA. J Virol 1996; **70**:7713–24.
- Kubo K, Fujiyoshi T, Yokoyama MM, Kamel K, Richt JA, Kitze B, et al. Lack of association of Borna disease virus and human T-cell leukemia virus type 1 infections with psychiatric disorders among Japanese patients. *Clin Diag Lab Immunol* 1997; **4**:189–94.
- Richt JA, Alexander RC, Herzog S, Hooper DC, Kean R, Spitsin S, *et al.* Failure to detect Borna disease virus infection in peripheral blood leukocytes from humans with psychiatric disorders. *J Neurol* 1997; 3:174–8.
- Gow JW, de la Torre JC, Behan WMH, Simpson K, McGill M, Dinan T, *et al.* Borna Disease virus in chronic fatigue syndrome. *Neurol Infect Epidemiol* 1997; 2:63–6.
- 74. Gow J, Behan W, de la Torre J, Dinan T, McGill M, Simpson K, *et al.* Borna Disease virus and chronic fatigue syndrome. *Abstract in J Neurol Sci* 1997; **150**:S225.
- Iwahashi K, Watanabe M, Nakamura K, Fujiwara Y, Isojima G, Suwaki H, *et al.* The relationship between Borna Disease Virus Infection and Schizophrenia. *Clin Psych* 1997; **39**: 1275–9.
- Iwahashi K, Watanabe M, Nakamura K, Suwaki H, Nakaya T, Nakamura Y, *et al.* Clinical investigation of the relationship between Borna disease virus (BDV) infection and schizophrenia in 67 patients in Japan. *Acta Psychiatrica Scand* 1997; **96**:412–15.

- 77. Iwahashi K, Watanabe M, Nakamura K, Suwaki H, Nakaya T, Nakamura Y, et al. Positive and negative syndromes, and Borna disease virus infection in schizophrenia. *Neuropsychobiol* 1998; **37**:59–64.
- Iwahashi K, Watanabe M, Nakamura K, Suwaki H, Nakaya T, Nakamura Y, *et al.* Borna disease virus infection and negative syndromes in Japanese schizophrenia patients. *Psych Clin Neurosci* 1998; **32**:119.
- Deuschle M, Heuser I, Gotthardt U, Schmider J, Bode L, Ludwig H. Borna Disease virus antigen in cerebrospinal fluid of patients with recurrent depression and multiple sclerosis. *Pharmacopsychiat* 1997; **30**:169 (abstracts of the 20th symposium of AGNP, Nuremberg 1997).
- Deuschle M, Bode L, Heuser I, Schmider J, Ludwig H. Borna disease virus proteins in cerebrospinal fluid of patients with recurrent depression and multiple sclerosis. *Lancet* 1998; 352:1828–9.
- Igata T, Yamaguchi K, Igata-Yi R, Yoshiki K, Takemoto S, Yamasaki H, et al. Dementia and Borna disease virus. Dement Geriatric Cognitive Dis 1997; 9:24–5.
- Selten JP, van Loon AM, van Vliet K, Pleyte W, Hoek HW, Kahn RS. Borna Disease Virus in Caribbean immigrants to the Netherlands, diagnosed with schizophrenia. *Schizophrenia Res* 1998; 29:1–2 (abstract).
- Takahashi H, Nakaya T, Nakamura Y, Asahi S, Onishi Y, Ikebuchi K, *et al.* Higher prevalence of Borna disease virus infection in blood donors living near thoroughbred horse farms. *J Med Virol* 1997; **52**:330–5.
- Bechter K, Schuttler R, Herzog S. Case of Neurological and behavioral abnormalities: due to Borna Disease Virus Encephalitis. *Psych Res* 1992; **42**:193–6.
- Bechter K, Schüttler R, Herzog. Borna Disease Virus: possible causal agent in Psychiatric and neurological disorders in two families. *Psych Res* 1992; **42**:291–4.
- Nowotny N, Dürr G. Enteroviral hypothesis for motor neurone disease. Br Med J 1995; 310:256.
- Planz O, Rentzch C, Batra A, Rziha H-J, Stitz L. Persistence of Borna Disease virus-specific nucleic acid in blood of psychiatric patients. *Lancet* 1998; 352:623.
- Rothman KJ & Greenland S. Causation and Causal Inference.
 In: Rothman KJ, Greenland S, eds. *Modern Epidemiology*, 2nd edn. Philadelphia, Lipincott Williams & Wilkins, 1998.
- Deeks JJ. Systematic reviews of published evidence: Miracles or minefields? Ann Oncol 1998; 9:1–7.
- Schwemmle M, Jehle C, Formella S, Staeheli P. Sequence similarities between human bornavirus isolates and laboratory strains question human origin. *Lancet* 1999; 354: 1973–4.
- 91. Bode, L, Stoyloff R, Ludwig H. Human bornaviruses and laboratory strains. *Lancet* 2000; **355**:1462.
- Nowotny N, Kolodziejek. Demonstration of Borna Disease Virus Nucleic Acid in a patient with Chronic Fatigue Syndrome. J Infect Dis 2000; 181:1860–1.